
Planning on the Grid: A Status Report
(DRAFT PPDG-20)

Francesco Giacomini, Francesco Prelz, Massimo Sgaravatto,
Igor Terekhov, Gabriele Garzoglio,

and Todd Tannenbaum

francesco.giacomini@mi.infn.it
francesco.prelz@mi.infn.it

massimo.sgaravatto@pd.infn.it
terekhov@fnal.gov
garzoglio@fnal.gov

tannenba@cs.wisc.edu

October 18, 2002

Abstract

Traditional batch job schedulers are a poor fit for a grid
computing environment. In order to respond to the grid
scheduling challenges, the client must perform planning.
In this paper, we expound upon the differences between
planning versus scheduling, and present two grid projects
which utilize a ClassAd matchmaking framework to en-
able planning on the grid. Planning for purposes of job
placement within the EU DataGrid and DZero SAMGrid
projects will be explored.

1 Introduction

A central purpose of grid computing is to enable a com-
munity of users to perform tasks upon a pool of shared
resources. Because there is rarely a one-to-one correspon-
dence between the number of tasks and the number of re-
sources, a scheduling model is required. A scheduling
model takes as input a description of both the tasks and
the resources, and as output makes decisions that conform
to a given scheduling policy. These scheduling decisions
answer questions such as which resources should be allo-
cated to which tasks and in what order should the tasks
be launched. In the context of job resource management
systems, the term scheduling typically refers to the iden-
tification of key metrics in the system and strategies to
subsequently optimize them. Much of this work was mo-

tivated by the proliferation in the early 1990s of massively
parallel processor (MPP) machines, and the desire to use
these very expensive resources as efficiently as possible.

1.1 Scheduler Challenges in a Grid Envi-
ronment

Scheduling in the traditional sense, however, must trans-
form itself when the resources are no longer a collec-
tion of CPUs in an MPP machine, or a collection of
nodes in a tightly coupled Beowulf cluster [18]. Schedul-
ing in a grid computing environment must contend with
challenges that result when the pool of resources spans
across multiple administrative domains, is very large, and
is widely dispersed. Some of these challenges include:

� Distributed Ownership - A traditional scheduler of-
ten assumes that it has total control over the re-
sources at all times. But in a grid environment this
is not true. Each administrative domain in a virtual
organization will desire to enforce its own unique
scheduling policy to enforce, and typically require its
own scheduling system to control its own resources.

� Heterogeneous resources - As grids grow, the va-
riety of resources to manage increases. Compute
nodes with varying operating systems, RAM, disk,
CPU, and network connectivity is only the begin-
ning. Grids will increasingly require the incorpo-

1

DRAFT PPDG-20 2

ration and co-scheduling of different types of re-
sources, such as compute nodes alongside electron
microscopes alongside software licenses.

� Dynamic resource pool - Resources will not be fixed;
both the number and type of resources will be in
continuous flux as the physical organizations that
make up the virtual organization act independently
to maintain, upgrade, and retire equipment.

� Absence of a fixed schema - Heterogeneous resources
have completely disparate attributes. There will be
minimal overlap in the schema describing a scan-
ning microscope versus a Linux workstation. Even
amongst homogenous resources, different adminis-
trative domains may collect different pieces of infor-
mation. The constant evolution of resources trans-
lates into an ever changing schema.

� External influences - Significant impact upon the be-
havior of the resources may result from events exter-
nal to the scheduler’s activity. For instance, assum-
ing the communication behavior of the job is avail-
able, a scheduler in a closed environment can pre-
dict the impact of job placement upon the connecting
network. But this would not be true in a wide-area
grid environment where the connecting network in-
volves the Internet. No matter what the scheduler
may know about the job, it would be unable to de-
duce total available Internet network bandwidth in
the same fashion.

� Stale information - To make decisions in a dynamic
environment, schedulers must be continuously up-
dated about task and resource characteristics. With
large wide-area grids, latency and bandwidth con-
straints will require caching this data. Scheduling
decisions based upon stale information must be at
least detected, and ideally, corrected.

1.2 Grids: Planning instead of Scheduling

These grid scheduling challenges, and distributed owner-
ship in particular, require a shift in methodology. We have
found an approach based upon planning on the part of the
client or a broker to be more applicable than customary
scheduling in such environments. During planning, a log-
ical request is mapped onto physical entities by matching
resource offers with resource requests in a manner that is
mindful of any constraints or preferences. Such planning
is commonplace in the real world. Reflect on how a con-
sumer, freezing in December because he lives in the mid-
dle of Wisconsin, would go about traveling by airline to

a lovely and warm location in remote Australia. A phone
call would be placed to a travel agent. The travel agent
would first ask for the destination, followed by such re-
quirements as arrival date, and finally preferences such
as window or aisle seat. Next the agent would consult
a timetable of thousands of discrete flights and find an
itinerary which is acceptable to both the consumer (ac-
ceptable arrival date, fewest number of transfers) and the
airline (client agrees to pay the fee, space is still avail-
able).

It is important to note that in this process, neither the
consumer nor the travel agent has the ability to influence
the schedule of the airplanes. That decision is up to the
airplane owners – the airlines. But despite the failing of
the airlines to schedule a flight from central Wisconsin to
central Australia, or even identify the demand for such
a flight, the goal can be achieved by planning. Planning
on the client-side can produce effective utilization of re-
sources which have been independently scheduled on the
server side.

1.3 Grid Planning in Practice

The remainder of this paper will describe two grid
projects that utilize planning for job placement. Specif-
ically, the EU DataGrid will be presented in section 3,
and the DZero SAMGrid will be discussed in section 4.
Both projects utilize the ClassAd Matchmaking Frame-
work, introduced in section 2.4, as the vehicle to perform
planning.

Upon incorporating a planning framework into a grid
job placement system, the question of when does the plan-
ning take place is a very important consideration. If a job
is mapped to a physical resource upon job submission, we
call this eager planning. If the mapping process is post-
poned until some period after the job has been submitted,
it is said to be lazy planning. Finally, very lazy planning
occurs if the mapping is postponed right up to the moment
when the resource is immediately available.

2 Relevant Technologies

This section will briefly introduce some common under-
lying technology utilized by both the EU DataGrid and
DZero SAMGrid projects: the Globus Toolkit developed
by the Globus project, followed by the Condor-G, DAG-
Man, and Matchmaking services developed by the Condor
project.

DRAFT PPDG-20 3

2.1 Globus Toolkit

The Globus Project [11] provides software tools that make
it easier to build computational grids and grid-based ap-
plications. These tools are collectively called the Globus
Toolkit. The Globus Tookit contains open source imple-
mentations of protocols designed to offer features such
as uniform access to distributed resources with diverse
scheduling mechanisms; information service for resource
publication, discovery, and selection; API and command-
line tools for remote file management, staging of executa-
bles and data; and enhanced performance through multi-
ple communication protocols.

2.2 Condor-G

The Globus Project designed the Grid Resource Access
and Management (GRAM) protocol [1] to provide a uni-
form interface for batch execution. GRAM provides
an abstraction for remote process queuing and execution
with several powerful features such as strong security and
file transfer. The Globus Project provides a server called
the jobmanager that speaks GRAM and converts its com-
mands into a form understood by a variety of batch sys-
tems.

To take advantage of GRAM, a user still needs a system
that can remember what jobs have been submitted, where
they are, and what they are doing. If jobs should fail,
the system must analyze the failure and re-submit the job
if necessary. To track large numbers of jobs, users need
queueing, prioritization, logging, and accounting. To pro-
vide this service, the Condor project adapted a standard
Condor agent to speak GRAM, yielding a system called
Condor-G [12]. This required some small changes to
GRAM such as adding durability and two-phase commit
to prevent the loss or repetition of jobs [13].

Essentially Condor-G represents the marriage of tech-
nologies from the Globus and Condor projects. From
Globus comes the use of protocols for secure inter-domain
communications and standardized access to a variety of
remote batch systems. From Condor comes the user con-
cerns of job submission, job allocation, error recovery,
and creation of a friendly execution environment.

In its simplest form, Condor-G is an example of eager
mapping. Jobs are bound to a compute site at the time of
submission. Condor-G can also employ an optional tech-
nique called glide-in, which allows Condor-G to perform
very lazy planning. This technique is explained in [12].

Advertisement (1)

Notification (3)

Claiming (4)

Adv
ert

ise
men

t (
1)

Noti
fic

ati
on

 (3
)

Agent Resource

Matchmaking Algorithm (2)
Matchmaker

Figure 1: Matchmaking.

2.3 DAGMan

The Directed Acyclic Graph Manager (DAGMan) is a ser-
vice for executing multiple jobs with dependencies in a
declarative form [20, 19]. DAGMan allows the manage-
ment of a group of jobs, which can be represented via a
Directed Acyclic Graph (DAG), where the nodes repre-
sent the jobs and the arcs represent the dependencies be-
tween them. ”Job X depends on job Y” means that X can
start only when Y has completed.

DAGMan might be thought of as a distributed, fault-
tolerant version of the traditional make. Like its ances-
tor, it accepts a declaration that lists the work to be done
and the constraints on its order. Unlike make, it does
not depend on the file system to record a DAG’s progress.
Indications of completion may be scattered across a dis-
tributed system, so DAGMan keeps private logs, allowing
it to resume a DAG where it left off, even in the face of
crashes and other failures [23].

2.4 Matchmaking with ClassAds

Matchmaking with ClassAds can be used to bridge the gap
between planning and scheduling. Matchmaking creates
opportunities for planners and schedulers to work together
while still respecting their essential independence.

Matchmaking is typically performed in four steps [15],
shown in Figure 1. In the first step, agents and resources
advertise their characteristics and requirements in clas-
sified advertisements (ClassAds), named after brief ad-
vertisements for goods and services found in the morn-
ing newspaper. In the second step, a matchmaker scans
the known ClassAds and creates pairs that satisfy each
other’s constraints and preferences. In the third step, the
matchmaker informs both parties of the match. The re-
sponsibility of the matchmaker then ceases with respect to
the match. In the final step, claiming, the matched agent
and resource establish contact, possibly negotiate further
terms, and then cooperate to execute a job.

DRAFT PPDG-20 4

Job ClassAd Machine ClassAd
MyType = “Job”
TargetType = “Machine”
Requirements =
((other.Arch==“INTEL” &&
other.OpSys==“LINUX”)
&& other.Disk � my.DiskUsage)
Rank = (Memory * 10000) + KFlops
Cmd = “/home/tannenba/bin/sim-
exe”
Department = “CompSci”
Owner = “tannenba”
DiskUsage = 6000

MyType = “Machine”
TargetType = “Job”
Machine = “nostos.cs.wisc.edu”
Requirements =
(LoadAvg � = 0.300000) &&
(KeyboardIdle � (15 * 60))
Rank =
other.Department==self.Department
Arch = “INTEL”
OpSys = “LINUX”
Disk = 3076076
Department = ”CompSci”
Memory = 512

Figure 2: Example of two simple ClassAds.

A ClassAd is a set of uniquely named expressions, us-
ing a semi-structured data model so no specific schema is
required by the matchmaker. Each named expression is
called an attribute. Each attribute has an attribute name
and an attribute value. In our initial ClassAd implemen-
tation, the attribute value could be a simple integer, string,
floating point value, or expression comprised of arith-
metic and logical operators. After gaining more experi-
ence, we created a second ClassAd implementation which
introduced richer attribute value types and related opera-
tors for records, sets, and tertiary conditional operators
similar to C.

Because ClassAds are schema-free, participants in the
system may attempt to refer to attributes that do not ex-
ist. For example, an job may prefer machines with the at-
tribute (Owner == ‘‘Fred’’), yet some machines
may fail to define the attribute Owner. To solve this,
ClassAds use three-valued logic which allows expressions
to evaluated to either true, false, or undefined.
This explicit support for missing information allows users
to build robust requirements even without a fixed schema.

The Condor matchmaker assigns significance to two
special attributes: Requirements and Rank. Re-
quirements indicates a constraint and Rank measures
the desirability of a match. The matchmaking algorithm
requires that for two ClassAds to match, both of their
corresponding Requirements must evaluate to true.
The Rank attribute should evaluate to an arbitrary float-
ing point number. Rank is used to choose among com-
patible matches: among provider ClassAds matching a
given customer ClassAd, the matchmaker chooses the one
with the highest Rank value (noninteger values are treated
as zero), breaking ties according to the provider’s Rank
value.

ClassAds for a job and a machine are shown in Fig-
ure 2. The Requirements state that the job must be
matched with an Intel Linux machine which has enough

free disk space (more than 6 megabytes). Out of any ma-
chines which meet these requirements, the job prefers a
machine with lots of memory, followed by good float-
ing point performance. Meanwhile, the machine ad Re-
quirements states that this machine is not willing to
match with any job unless its load average is low and the
keyboard has been idle for more than 15 minutes. In other
words, it is only willing to run jobs when it would other-
wise sit idle. When it is willing to run a job, the Rank
expression states it prefers to run jobs submitted by users
from its own department.

3 Planning on the EU DataGrid

3.1 DataGrid Introduction

The European DataGrid project [10] is a three year project
(started on January 2001) funded by the European Union
with the aim of setting up, by devising and developing
scalable software solutions and testbeds, a computation
and data-intensive grid of resources, to support globally
distributed scientific processing involving multi-PetaByte
datasets, tens of thousands of resources, and thousands
of simultaneous users. While the project focuses on sci-
entific applications such as High Energy Physics, Earth
Sciences and Bio-Informatics, many issues addressed by
the project are common to many applications and thus
the project has a potential impact on future industrial and
commercial activities.

3.2 DataGrid WP1 Architecture

The workload management area (Work Package 1, WP1)
[4] of the EU DataGrid project is mandated to define and
implement a suitable architecture for distributed schedul-
ing and resource management in the Grid environment.

In the first phase of the project, the main goal was to
rapidly implement a working prototype with the funda-
mental functionalities, providing users with an environ-
ment allowing to define and submit jobs to the Grid, and
able to find and use the “best” resources for these jobs.
This first workload management system, implemented in
the first year of the project and deployed in the DataGrid
testbed, is described in [2] and [8].

The experience acquired, the feedback received by the
users and the additional functionality required to meet the
project goals, triggered an update of this architecture, in
order to increase the reliability of the system, to simplify
the flow of control, to support for new functionalities, to
allow the use of WP1 modules (e.g. the Resource Bro-

DRAFT PPDG-20 5

Figure 3: UML diagram describing the new DataGrid WP1 Workload Management System architecture.

ker) also outside the WP1 Workload Management System
(WMS).

The updated Workload Management System architec-
ture [3] is illustrated in Figure 3.

The User Interface (UI) is the component that allows
users to access the functionality offered by the Workload
Management System, in particular to submit, control and
monitor jobs on the Grid. Users are provided with a spe-
cific, ClassAd-based Job Description Language, JDL ([5],
[6]) to specify the characteristics of their jobs and the re-
quirements and preferences to be matched against avail-
able Grid resources.

The Network Server is a generic network daemon, re-
sponsible for accepting incoming requests from the UI
(e.g. job submission, job removal), which, if valid, are
then passed to the Workload Manager. For this purpose
the Network Server uses Protocol, to check if the incom-
ing requests conform to the agreed protocol.

The Workload Manager, given a valid request, takes
the appropriate actions to satisfy it. To do so, it may need
support from other components, which are specific to the
different request types. All these components that offer
support to the Workload Manager provide a class whose
interface is inherited from a Helper class. Essentially the
Helper, given a JDL expression, returns a modified one,
which represents the output of the required action. For
example, if the request was to find a suitable resource for

a job, the input JDL expression will be the one specified
by the user, and the output will be the JDL expression
augmented with the computing resource choice.

The Resource Broker is one of these classes offering
support to the Workload Manager. It provides a match-
making service: given a JDL expression (e.g. for a job
submission, or for a resource reservation request), it finds
the resource(s) that best match the request.

The Job Adapter is responsible for arranging the final
cosmetics to the JDL expression for a job, before it is
passed to Condor-G for the actual submission.

Condor-G is the module responsible for performing the
actual job management operations, issued on request of
the Workload Manager.

The Log Monitor task is to intercept interesting events
about active jobs out of Condor-G and to trigger appropri-
ate actions.

The Reservation Agent and the Co-Allocation Agent,
represented in the same block to simplify the figure, are
the core components of the resource reservation and re-
source co-allocation frameworks, discussed in [3].

For what concerns the Logging and Bookkeeping ser-
vice, it stores logging and bookkeeping information con-
cerning events generated by the various components of
the WMS. Using this information, the LB service keeps
a state machine view of each job. The dependencies be-
tween this component and the other modules of the Work-

DRAFT PPDG-20 6

load Management System are not represented in the fig-
ure, again for increased simplicity.

The Partitioner is a Helper class used to support par-
titionable jobs, that is jobs which can be “decomposed”
into sub-jobs; job partitioning is discussed in [3] and [7].

3.3 The Resource Broker

The Resource Broker (RB) can be considered the core
component of the workload management system. Its main
task is to find a computing resource that best matches the
requirements and preferences of a submitted job.

This task is composed of three main functional units:

� a matchmaking unit, returning all the resources suit-
able for a given JDL expression;

� a ranking unit, returning the ”best” resources for a
given JDL expression, out of a set of matches;

� a planning strategy unit: the RB must take into ac-
count different parameters, such as the resource ac-
cess policies, the availability of the input data set, the
characteristics and status of resources, the availabil-
ity of the required application environments. This re-
source selection code is kept modular enough to eas-
ily implement new, more clever strategies. As first
and basic optimization strategy, jobs are submitted
“close” to data.

The matchmaking is performed when the RB receives
it, and therefore when a job is ready to be submitted to the
Grid: a very lazy planning approach (the job is bound to a
resource where the resource is already acquired; therefore
when there is an available resource, the best-matching job
among those that are in the queue is found) will be inves-
tigated in the future.

To achieve its goal the Resource Broker interacts with
other Grid services, in particular it obtains information
about data location from the Replica Catalog (which maps
logical files to their physical entities), and information
about Grid resources from the Information Services.

The implementation of the RB is based on the Con-
dor matchmaking library: the required and preferred re-
sources (specified in the JDL expression passed to the RB
by the UI) are matched with a ClassAd view of the avail-
able resources (obtained from the Information Services
and the Replica Catalog).

The Resource Broker is designed so that it can be used
at different hierarchical levels: both at a community level
(one RB serving a group of users) and possibly even at a
personal level (one RB per submitting machine).

3.4 Integration with DAGMan

The first version of the Workload Management System
supported only submission of independent jobs. Although
this certainly allows the accomplishment of significant
work, it became evident that providing support for man-
aging jobs with dependencies between them would have
better addressed some important application needs.

The reviewed version of the WMS was then designed
with the integration of DAGMan in mind. When a DAG is
submitted to Condor-G, this starts a local DAGMan pro-
cess, whose purpose is to iterate through all the jobs con-
tained in the DAG and start them in the right order: a job
is passed to Condor-G when freed from any dependency.
The whole processing is done in a fail-safe way.

Due to the lazy planning scenario that we are consider-
ing (each node of the DAG is bound to a resource when
the job is ready to be submitted, that is when it is free
from dependencies), some work was necessary in order to
force the DAGMan process to call some scheduling func-
tionality before the hand-over of a job to Condor-G, to
find an appropriate resource for its execution. Aiming at
maximizing the software reuse, it was considered an ad-
vantage if the solution could be shared with the Workload
Manager implementation. The common solution was the
adoption of the Helper approach, that easily allows call-
ing the EDG Resource Broker and any other functionality
exported via the Helper interface.

Additional work was devoted to bridge the different
format of requests used by Condor-G and DAGMan on
one side and the EDG software on the other.

4 Planning on the DZero SAMGrid

The D0 project approaches the topic of Job Planning from
two directions. Logical job management involves under-
standing of what a D0 job is, and how it is viewed by the
user and by the scheduler. Physical job management is
centered at resource management and involves brokering,
scheduling and planning. At D0, both aspects of job plan-
ning are impacted strongly by the data handling system,
because most D0 jobs are fundamentally data-intensive
and because data handling (SAM, [17]) has historically
been the strongest part of the D0 meta-computing[21].

4.1 Job Definition and Structure

In the Grid world, it is widely known that jobs are com-
posite entities represented by a DAG (Directed Acyclic
Graph), and tools such as DAGMan emerge that can rep-
resent dependencies among the job’s parts. In general,

DRAFT PPDG-20 7

however, job definition is more than the mere specifica-
tion of a DAG; the purpose of this section is to reflect the
ongoing work to deeper understand and better describe
the D0 job.

At D0, we say that a job is unstructured, if its details are
unknown to the scheduler, the status monitoring service,
and the metadata catalogue. The user submits a single
script to the system, even though it may be quite compli-
cated internally, and contain distinct steps from the user’s
point of view. The more job details are known to the sys-
tem, the more structured we say it is.

Work to define the job structure started in [9]. In sum-
mary, a job is a collection of synchronized phases. Within
each phase, different lines of execution take place, with
varying degrees of parallelism and each consisting of a
list of packages to be executed sequentially at each ma-
chine.

Implicit for each phase is the input dataset. A phase
boundary (as opposed to a boundary between packages
in a line) has results of independent importance, i.e., the
user may wish to reuse them later. Furthermore, it is a
high-level checkpoint, a place where the job may be sus-
pended and resumed later, perhaps in a different location.
One shouldn’t confuse this checkpoint with the low-level
checkpoint mechanism offered by Condor, which check-
points a running binary using a memory dump of the pro-
cess. Rather, since we deal with datasets, our inter-phase
checkpointing makes interim data persistent with the data
handling system so that it can be made available again
later. Thus, defining and perhaps storing of the datasets is
an integral part of job handling and our final job defini-
tion scheme will reflect this concept.

Another key point that cannot yet be fully represented
using tools such as DAGMan is the degree of parallelism
at each phase (or stage). Specifically, an optimal DAG can
be specified if the number of nodes is known statically,
i.e. prior to job submission. In the SAMGrid project,
we believe, however, that once a phase is complete, the
next phase’s desired degree of parallelism is determined
by the output of the preceding phase, such as the size of
the dataset in terms of e.g. the number of files created
by that phase. Thus, a highly optimized scheduler will
obtain this information dynamically with the help of the
data handling system. At present, however, we are uncer-
tain whether such a functionality is required in the Grid
planner or is best left to negotiation between the data han-
dling and the local batch system (by means of the ”sam
submit” command[22]).

4.2 Physical Job Management

The most common Grid infrastructure for the fundamen-
tal service of remote job execution and monitoring is pro-
vided by the GRAM protocol and jobmanager service
from the Globus Toolkit. The Condor-G software pro-
vides the higher level service of reliable job submission.
For our purposes, we need to provide the request broker-
ing service (referred to as resource brokering in [10]).

Having reviewed the relevant Grid technologies, we
have chosen to use Condor’s Match Making Service
(MMS), [16] as the request broker. The novelty of our
approach is that the properly configured MMS will be the
whole request broker, rather than its part, base, or advi-
sor. Our choice is driven by the collaboration of D0 with
the University of Wisconsin under PPDG, as well by the
record of success of MMS as part of the Condor system.

Such a utilization of MMS constitutes a paradigm shift
for Condor-G from a personal grid manager to a whole
system job manager. This approach gives us unlimited
opportunities to implement various policies, as well as re-
source management considerations (together, they form
what we call computational economy), by means of re-
defining the ranking functions for the jobs.

The contents of the ranking function will be determined
hopefully as a result of a research project; at present, we
are confident about one issue - that the data handling sys-
tem will play a key role in defining such ranks. We be-
lieve the data handler will write part of the ClassAds, and
will enter the job management area by means of more
than mere publishing of its replica catalogue (a well es-
tablished idea in the Grid world). Given the availability
of SAM and experience using it, we believe that we are
well positioned to provide a higher degree of sophistica-
tion in our computational economy. Examples of factors
that may affect scheduling include:

� The utilization, current and projected, of the disk
caches managed by SAM stations. The rate of data
consumption by the existing tasks.

� The throughput of the data transfers to/from stations
(this is different from network conditions as it is af-
fected by the previous item).

� The near term predictions, from the Data Handling
Global Resource manager, on the availability of the
remotely cached datasets.

Note that these, and other factors may well change after
the job is submitted and before it is successfully matched,
thus precluding their full specification in the submitted or
the advertised ClassAds. We have therefore extended the

DRAFT PPDG-20 8

ClassAd mechanism to include the capability to call, in
the course of the match-making, an externally supplied
function. In the near future, we plan to use these external
functions to consult the data handling system.

The Condor MMS is a rather fertile ground for job
management. Note that our idea to have the MMS use
external function is not restricted to the data handling con-
siderations. It gives the system designer a wide opportu-
nity to include virtually arbitrary criteria for scheduling
— a promising framework for building the prototype for
SAM and other Grids.

4.3 D0 Summary and Further Information

In summary, we envision the following picture [14]. The
user defines a job in some user-friendly language (the
job definition language) whereby he specifies the various
parts of the job, their dependencies, their desired or pos-
sible degree of parallelism and the significance (and ways
of handling) of its interim datasets. This job description
file (JDF) is processed by the client (user interface in the
EDG terminology) so as to incorporate the appropriate
ranking functions etc, and another job description file, this
time in the format of ClassAds plus DAGMan. This JDF
is given to the request broker that rejects or matches the
job and further (although to a smaller extent) re-writes the
JDF so as to send it to the job submission service. It is ex-
ecuted in the well-known fashion by the lower layers. For
more details, please see [14] and references therein.

5 Conclusions

Two applications of existing Grid planning technology
were presented. Both see the active participation of ex-
perimental/scientific groups whose computing needs are
most appropriately addressed not just in terms of comput-
ing cycles, but also considering the nature, size and dis-
tribution of the data to be processed. Existing technolo-
gies now provide a firm ground where the Grid distributed
computing paradigm can be matched to this kind of re-
quirements. Extensions to the Class-ad match-making
services are being worked on to make data, storage and
other application-specific information available for sym-
metric match-making and simplify the procedures that are
currently needed to map to the existing sources of Grid in-
formation. The advantage of applying (lazy or very lazy)
planning choices to the individual stages that a single
computation or data-handling job can be partitioned into
is also becoming clearer. Therefore, the necessary analy-
sis to extend the current support for declarative DAGs and

provide handling for different classes of failure conditions
and other events that may occur dynamically at DAG exe-
cution time is also in progress. The constant reality check
provided by the needs of our end-users is the main catalyst
allowing good progress for these developments.

ACKNOWLEDGEMENTS

The US work is partially sponsored by the Particle Physics Data
Grid SciDac Collaboratory Pilot. This paper is PPDG-20.; Fer-
milab work is partially sponsored by DOE contract No. DE-
AC02-76CH03000; WP1 work is funded by the European Data-
Grid Project (IST-2000-25182).

References
[1] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,

S. Martin, W. Smith, and S. Tuecke. A resource man-
agement architecture for metacomputing systems. In Pro-
ceedings of the IPPS/SPDP Workshop on Job Scheduling
Strategies for Parallel Processing, pages 62–82, 1988.

[2] DataGrid - Definition of Architecture, Technical
Plan and Evaluation Criteria for Scheduling, Re-
source Management, Security and Job Description.
http://www.infn.it/workload-grid/docs/DataGrid-01-D1.2-
0112-0-3.pdf.

[3] DataGrid - Definition of Architecture, Technical Plan and
Evaluation Criteria for the Resource Co-Allocation Frame-
work and Mechanisms for Parallel Job Partitioning. todo.

[4] Home page for the Grid Workload Manage-
ment workpackage of the DataGrid project.
http://www.infn.it/workload-grid.

[5] DataGrid - Job Description Language HowTo.
http://www.infn.it/workload-grid/docs/DataGrid-01-
TEN-0102-0 2.pdf.

[6] DataGrid - JDL Attributes. http://www.infn.it/workload-
grid/docs/DataGrid-01-NOT-0101-0 6-Note.pdf.

[7] DataGrid - Job partitioning and checkpointing.
http://www.infn.it/workload-grid/docs/DataGrid-01-
TED-0119-0 3.pdf.

[8] C. Anglano et al. Integrating Grid tools to build a Com-
puting Resource Broker: Activities of DataGrid WP1. In
Proceedings of the Conference on Computing in High En-
ergy Physics 2001 (CHEP01), Beijing, September 2001.

[9] D. Meyer et al. D0 Job Components. internal D0 docu-
ment.

[10] Home page for European DataGrid Project.
http://www.eu-datagrid.org.

[11] Ian Foster and Carl Kesselman. Globus: A metacomputing
intrastructure toolkit. International Journal of Supercom-
puter Applications, 11(2):115–128, 1997.

DRAFT PPDG-20 9

[12] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny,
and Steve Tuecke. Condor-G: A computation management
agent for multi-institutional grids. In Proceedings of the
Tenth IEEE Symposium on High Performance Distributed
Computing (HPDC), pages 7–9, San Francisco, California,
August 2001.

[13] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny,
and Steve Tuecke. Condor-G: A computation manage-
ment agent for multi-institutional grids. Cluster Comput-
ing, 5:237–246, 2002.

[14] G. Garzoglio. The SAM-GRID Project: Architecture and
Plan (plenary talk). In Proceedings of the VIII Interna-
tional Workshop on Advanced Computing and Analysis
Techniques in Physics Research (ACAT’2002), June 2002
(to appear).

[15] Miron Livny and Rajesh Raman. High-throughput re-
source management. In Ian Foster and Carl Kesselman,
editors, The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 1998.

[16] Rajesh Raman, Miron Livny, and Marvin Solomon.
Matchmaking: Distributed resource management for high
throughput computing. In Proceedings of the Seventh
IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC7), Chicago, IL, July 1998.

[17] Home page for the SAM project. http://d0db.fnal.gov/sam.

[18] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband,
U. A. Ranawake, and C. V. Packer. BEOWULF: A parallel
workstation for scientific computation. In Proceedings of
the 24th International Conference on Parallel Processing,
pages 11–14, Oconomowoc, Wisconsin, 1995.

[19] Condor Team. Condor Manual. Available from
http://www.cs.wisc.edu/condor/manual,
2001.

[20] Condor Team. The directed acyclic graph manager.
http://www.cs.wisc.edu/condor/dagman, 2002.

[21] I. Terekhov. The SAM-GRID Project: Architecture and
Plan (plenary talk). In Proceedings of the VIII Interna-
tional Workshop on Advanced Computing and Analysis
Techniques in Physics Research (ACAT’2002), June 2002
(to appear).

[22] Igor Terekhov. Distributed processing and analysis of
physics data in the dzero sam system at fermilab. Technical
Report Fermilab-TM-2156, Fermi National Laboratory.

[23] Douglas Thain, Todd Tannenbaum, and Miron Livny. Con-
dor and the grid. In Fran Berman, Geoffrey Fox, and
Tony Hey, editors, Grid Computing: Making the Global
Infrastructure a Reality. John Wiley & Sons Inc., Decem-
ber 2002.

	1 Introduction
	1.1 Scheduler Challenges in a Grid Environment
	1.2 Grids: Planning instead of Scheduling
	1.3 Grid Planning in Practice

	2 Relevant Technologies
	2.1 Globus Toolkit
	2.2 Condor-G
	2.3 DAGMan
	2.4 Matchmaking with ClassAds

	3 Planning on the EU DataGrid
	3.1 DataGrid Introduction
	3.2 DataGrid WP1 Architecture
	3.3 The Resource Broker
	3.4 Integration with DAGMan

	4 Planning on the DZero SAMGrid
	4.1 Job Definition and Structure
	4.2 Physical Job Management
	4.3 D0 Summary and Further Information

	5 Conclusions

